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FORECASTING BITCOIN VOLATILITY USING TWO-

COMPONENT CARR MODEL 

 

 
Abstract. In this paper, we propose an extension of the range-based CARR 

model, the two-component CARR (CCARR) model to model and forecast the 
Bitcoin volatility. The extension inherits the strength of the original range-based 

CARR model, its capability of exploiting intraday information from the high and 

low prices to estimate volatility. Moreover, the CCARR model has the capacity to 

accommodate the long memory volatility. Empirical results show that the CCARR 
model outperforms the CARR model and the return-based GARCH and two-

component GARCH (CGARCH) models in forecasting the Bitcoin volatility. The 

results highlight the value of using price range and including a second component 
of the conditional range for forecasting the Bitcoin volatility. 

Keywords: Bitcoin,Two-component CARR, Price range, Two-component 

GARCH, Volatility forecasting, Long memory. 
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1. Introduction 
 

Bitcoin was initially introduced in 2008 by Satoshi Nakamoto, which is a 

digital decentralized cryptocurrency based on the block chain technology 
(Nakamoto, 2008). Since its creation, Bitcoin has witnessed a rapid development 
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and has attracted increasing attention from investors, practitioners and researchers. 
Over the last few years, the price of Bitcoin has increased tremendously. At the 

same time, it has experienced extreme volatility. Therefore, it is important to model 

and forecast the Bitcoin volatility, as it plays a crucial role in investment decision-
making and risk management. 

Previous studies of the Bitcoin volatility are mainly based on the GARCH-

type models. Dyhrberg (2016) employs the GARCH models to study the financial 

asset capabilities of Bitcoin. Further, Baur et al. (2018) replicate and extend the 
findings of Dyhrberg (2016). Katsiampa (2017) explores the optimal GARCH 

model to explain the Bitcoin volatility. Chu et al. (2017) use the GARCH-type 

models to model seven most popular cryptocurrencies including the Bitcoin. Mensi 
et al. (2019) use the GARCH models to investigate the impact of dual long 

memory and structural breaks on the volatility of Bitcoin market. Ardia et al. 

(2019) use the Markov-switching GARCH models to examine the presence of 
regime changes in the Bitcoin volatility. Gronwald (2019) employs a GARCH-

Jump model to investigate the extreme price movements in the Bitcoin market. 

Conrad et al. (2018) and Walther et al. (2019) apply the GARCH-MIDAS model to 

model and forecast the Bitcoin volatility. Köchling et al. (2019) evaluate the 
volatility forecasting accuracy for Bitcoin using 172 GARCH-type models. Troster 

et al. (2019) and Trucíos (2019) adopt GARCH models to model and forecast the 

Bitcoin risk.  
The above GARCH approach for studying the volatility dynamics of 

Bitcoin relies on the daily return data. However, the daily return data are computed 

from the closing prices, which neglects all intraday price movement. An alternative 

approach for estimating volatility is to employ the daily price range, which is based 
on the intraday high and low prices. It is clear that the price range includes more 

information on intra-period trajectory of the price, whereas the return-based 

volatility estimator only includes a single measurement of the closing price. 
Parkinson (1980) and Alizadeh et al. (2002) have shown that the price range is a 

more efficient volatility estimator than the commonly used return-based one. More 

recently, Degiannakis and Livada (2013) show that the price range volatility 
estimator is more accurate than the realized volatility estimator based on five, or 

less, intraday returns. 

Strangely, despite the superiority of the price range, there are very few 

works using it to study the volatility dynamics of Bitcoin. This paper aims to 
estimate the Bitcoin volatility using the price range. To capture the dynamics of the 

price range, Chou (2005) develops the conditional autoregressive range (CARR) 

model, which has the similar structure with the GARCH model. However, unlike 
the GARCH model that uses only closing prices data, the CARR model uses 

intraday data of the high and low prices, which exploits the intraday information to 

model and estimate volatility. Chou (2005) and Chou and Liu (2010) demonstrate 
that the CARR model provides more accurate volatility estimates than the standard 

GARCH model. As a consequence, the CARR model has attracted a great deal of 
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attention in the literature (see, e.g., Chen et al., 2008; Chiang and Wang, 2011; Lin 
et al., 2012; Sin, 2013; Anderson et al., 2015; Auer, 2016; Ng et al., 2017; Xie and 

Wu, 2017, 2019; Chan et al., 2019; Xie, 2019). 

Nevertheless, the standard CARR model may still not be adequate to 
capture the long memory volatility, a well-known feature of volatility that is 

important for empirical applications such as volatility forecasting. To address this 

salient stylized fact of volatility, Engle and Lee (1999) propose a two-component 

GARCH (CGARCH) model that decomposes volatility into a short-run and a long-
run component. Recently, based on the CGARCH model, Katsiampa (2017) shows 

the importance of including both a short-run and a long-run component of the 

conditional variance for estimating the volatility of Bitcoin. Motivated by the 
above interpretation, we extend the standard CARR model to the two-component 

CARR (CCARR) model to model and forecast the Bitcoin volatility. The CCARR 

model has the similar structure with the CGARCH model of Engle and Lee (1999), 
which is able to account for the long-memory volatility and is also simple to 

implement. 

This paper contributes to the literature by modelling and forecasting the 

Bitcoin volatility using the range-based CARR and CCARR models. The 
application of return-based GARCH models to model and forecast the Bitcoin 

volatility has been extensively investigated. However, to the best of our 

knowledge, there is no previous study applying the CARR model and in particular, 
the CCARR model to model and forecast the Bitcoin volatility. We examine and 

compare the out-of-sample forecasting performance of the return-based GARCH 

and CGARCH models and the range-based CARR and CCARR models. Our 

results show that the CCARR model outperforms the CARR, GARCH and 
CGARCH models in forecasting the Bitcoin volatility, highlighting the value of 

using price range and including a second component of the conditional range for 

forecasting the Bitcoin volatility. 
The rest of the paper is organized as follows. Section 2 describes the 

volatility models for modelling and forecasting the Bitcoin volatility, namely the 

return-based GARCH and CGARCH models and the range-based CARR and 
CCARR models. Section 3 illustrates the forecast evaluation method. Section 4 

presents the empirical results, and Section 5 concludes. 

 

2. Volatility Models 
 

In this section, we describe two classes of volatility models, the return-

based GARCH and CGARCH models and the range-based CARR and CCARR 
models, which are used to model and forecast the Bitcoin volatility. 
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2.1The GARCH and CGARCH Models 
The GARCH model has been widely used in the literature to model and 

forecast the financial volatility. The standard GARCH(1,1) model proposed by 

Bollerslev (1986) is given by 

, ~ i.i.d. (0,1)t t t tr z z N  (1) 

2 2 2
1 1t t tr        (2) 

where tr  is the log-return at time t , 2
t  is the conditional variance (or 

squared volatility) of the return tr  based on the information set 1tF  up to time 

1t  , or 2
1Var[ | ]t t tr  F , tz  is the (standardized) return innovation, which is 

assumed to follow a standard normal distribution, and  ,   and   are 

parameters. For the conditional variance 2
t  to be positive and stationary, we 

require that 0 , , 0    and 1   . 

It has been well-documented empirically in the finance literature that the 

financial volatility responds asymmetrically to the positive and negative returns. A 

popular explanation for this stylized fact is the leverage effect. To capture the 

leverage effect, alternative asymmetric GARCH models such as the EGARCH and 
the GJR-GARCH could be employed. However, it has been documented in the 

literature that the leverage effect is not significant for cryptocurrencies including 

the Bitcoin (Tiwari et al., 2019). Thus, in the paper we use the standard GARCH 
model without leverage effect to model and forecast the Bitcoin volatility. 

To address the long memory property of volatility, Engle and Lee (1999) 

extend the standard GARCH model to the CGARCH model, which is given by 

, ~ i.i.d. (0,1)t t t tr z z N  (3) 

2 2 2 2 2 2
1 1 1 1 1 1( ) ( )t t t t t tq r q q            (4) 

2 2 2 2
2 1 1 2 1( )t t t tq r q          (5) 

where 2
tq  is referred to as the long-run component of the conditional 

variance and 2 2
t tq   is referred to as the short-run component. 

 

2.2 The CARR and CCARR Models 

The GARCH model uses daily return computed from the closing prices to 

model and estimate volatility. In the paper, we also use the price range which is 
based on the intraday high and low prices to estimate the Bitcoin volatility. The 

price range is defined as 

1
(log log )

4log 2
t t tR H L   (6) 

where tH  and tL  denote the high and low prices of Bitcoin at day t , 

respectively. Parkinson (1980) demonstrates that the price range defined in Eq. (6) 

is a five times more efficient volatility estimator than the squared return. 
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To model the dynamics of the price range, Chou (2005) develops the 
CARR model, which can be written as 

, ~ i.i.d. exp(1)t t t tR     (7) 

1 1t t tR        (8) 

where t  is the conditional mean of the price range tR  based on the 

information set 1tF  up to time 1t  , or 1[ | ]t t tE R  F . The disturbance term t  

is assumed to follow an exponential distribution with unit mean.  ,   and   are 

parameters. For the conditional range t  to be positive and stationary, we require 

that 0 , , 0    and 1   . 

Building upon the CGARCH model from Engle and Lee (1999), we derive 

the CCARR model for modelling and estimating the Bitcoin volatility as 

, ~ i.i.d. exp(1)t t t tR     (9) 

1 1 1 1 1 1( ) ( )t t t t t tq R q q            (10) 

2 1 1 2 1( )t t t tq R q          (11) 

where tq  is referred to as the long-run component of the conditional range 

and t tq   is referred to as the short-run component. 

 

3. Forecasting Evaluation 
 

As the volatility is unobservable, we adopt three measures of the ex-post 

volatility as proxies of the true volatility: the price range (RNG) defined in Eq. (6), 

the realized volatility (RV) and the realized range-based volatility (RRV). The RV 
and RRV are defined as follows: 

2
, , 1

1

(log log )
N

t t i t i

i

RV P P 



   (12) 

2
, ,

1

1
(log log )

4log 2

N

t t i t i

i

RRV H L


   (13) 

where ,t iP , ,t iH  and ,t iL  are the last, high and low prices over i th interval 

on day t , respectively. In the paper, we use 5-min intraday return data to compute 

the RV and RRV measures. 

To compare the forecasting performance of the competing models, we use 

two robust loss functions of Patton (2011), namely the mean squared error (MSE) 
and the quasi-likelihood (QLIKE). The MSE and QLIKE are robust to imperfect 

volatility proxy, which are defined as: 

 
2

MSE : t t tL MV FV   (14) 



 

 
 

 

 

Xinyu Wu, Shenghao Niu, Haibin Xie 

____________________________________________________________ 

82 

DOI: 10.24818/18423264/54.3.20.05 

QLIKE : log 1t t
t

t t

MV MV
L

FV FV
    (15) 

where t tMV RNG , tRV  or tRRV  is measured volatility, and tFV  is forecasted 

volatility. 

Moreover, we use the Diebold-Mariano (1995) test to determine whether 

there is significant difference between two competing models in forecasting the 

Bitcoin volatility. To be specific, we test the superiority of model i  over model j  

using a t -test for the coefficient ,i j  in 

2 2
, , ,i t j t i j t   ò ò  (16) 

where ,i tò  and ,j tò  are the forecast errors for models i  and j , respectively. 

It is clear that , 0i j   suggests that the model j  dominates the model i  and vice 

versa. 
 

4. Empirical Analysis 
 

4.1 Data 
For the empirical analysis, we employ the CCARR model to forecast the 

Bitcoin volatility. The data consists of daily open, high, low and close prices (in 

US dollars) for Bitcoin traded on Bitstamp, which are obtained from 
https://bitcoincharts.com/. The sample spans the period from January 1, 2014 to 

November 4, 2019. The Bitcoin return is computed as 1log logt t tr P P  , where 

tP  is the Bitcoin closing price on day t , and the Bitcoin price range is computed 

using the Eq. (6). Figure 1 shows the time series plots of the Bitcoin daily (closing) 

prices, returns and price ranges. It is evident from the figure that the price of 

Bitcoin increased tremendously with extreme volatility since 2017. 
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Figure 1. Time series plots of Bitcoin daily prices, returns and price ranges 

 

 

Table 1 presents descriptive statistics of the Bitcoin daily returns and price 
ranges. As can be seen from the table, Bitcoin is highly volatile, with an annualized 

standard deviation of 76.04% ( 0.0398 365  ) for the returns and an annualized 

mean of 62.86% ( 0.0329 365  ) for the price ranges. Also, we find that the 

Bitcoin returns are negative skewed and leptokurtic, while the Bitcoin ranges are 

heavily positive skewed and leptokurtic.1Moreover, the large Ljung-Box (20)Q  

statistic for the Bitcoin price ranges shows the Bitcoin volatility exhibits high 
persistence or long memory behavior. 

 

Table 1.Descriptive statistics of Bitcoin daily returns and price ranges 

  Returns Ranges 

Obs. 2127 2127 

Mean 0.0012 0.0329 

Min. -0.2809 0.0034 

Max. 0.2384 0.2495 

                                                
1In the paper, we use the simple normal distribution in the return-based GARCH and 

CGARCH models and the exponential distribution in the range-based CARR and CCARR 
models. Considering the empirical features of the Bitcoin return and range distributions, 

alternative distribution specifications in the models could be employed. As the focus of the 

paper is on Bitcoin volatility forecasting rather than distribution choices, we leave it for 

future research. 
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Std. Dev. 0.0398 0.0272 

Skewness -0.2826 2.3193 

Kurtosis 8.4388 11.1486 

(20)Q  37.4641 4234.8936 

Note: (20)Q  is the Ljung-Box Q  statistic for autocorrelation up to lag 20. 

 

4.2 Out-of-Sample Results 
In this section, we examine and compare the out-of-sample forecast 

performance between the GARCH, CGARCH, CARR and CCARR models for 

forecasting 1-day, 5-days, 10-days, 15-days and 20-days ahead Bitcoin volatility. 
We perform the forecasts using a rolling window scheme with a fixed window size 

of 1400 trading days. The rolling window is rolled forward daily. The parameters 

of the four models are estimated by employing the quasi-maximum likelihood 

estimation method. The estimation results for the models are not presented here to 
save spacebut are available upon request. 

Tables 2-4 present the out-of-sample forecast results for the four models 

for the three measured volatilities MV: RNG, RV and RRV. As can be seen from 
the tables, the range-based (C)CARR model outperforms the return-based 

(C)GARCH model in most cases for the three measured volatilities and the five 

forecast horizons in terms of the MSE and QLIKE loss functions, which highlights 

the value of using price range for modelling and forecasting the Bitcoin volatility. 
In addition, we observe that the CGARCH/CCARR model outperforms the 

GARCH/CARR model in most cases. This result demonstrates that including a 

second volatility component is important for improving the Bitcoin volatility 
forecasts. It is also worth noting that with the increase of the forecast horizon, the 

Bitcoin volatility becomes more difficult to forecast for all the four models, which 

can also be seen clearly from Figure 2. Overall, the CCARR model generally 
exhibits the lowest MSE and QLIKE losses and appears as the best model in 

forecasting the Bitcoin volatility. 

 

Table 2.Out-of-sample forecasting results for Bitcoin (MV:RNG) 

 Horizon GARCH CGARCH CARR CCARR 

MSE 

1 5.3440E-04 5.1814E-04 4.8415E-04 4.7381E-04 

5 7.0682E-04 6.9227E-04 6.3162E-04 5.9532E-04 

10 7.8296E-04 7.6850E-04 6.8468E-04 6.3429E-04 

15 8.1394E-04 7.9551E-04 6.9593E-04 6.5015E-04 

20 9.2046E-04 8.8370E-04 7.2960E-04 6.7751E-04 

QLIKE 

1 1.6440E-01 1.6119E-01 1.5424E-01 1.5217E-01 

5 2.0356E-01 2.0199E-01 1.8557E-01 1.8061E-01 
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10 2.2905E-01 2.2965E-01 2.1052E-01 2.0739E-01 

15 2.4428E-01 2.4517E-01 2.1745E-01 2.2009E-01 

20 2.6269E-01 2.6161E-01 2.2655E-01 2.2829E-01 
 

Table 3.Out-of-sample forecasting results for Bitcoin (MV:RV) 

 Horizon GARCH CGARCH CARR CCARR 

MSE 

1 4.2051E-04 4.0311E-04 3.7791E-04 3.6090E-04 

5 6.1028E-04 5.9783E-04 6.0769E-04 5.5758E-04 

10 6.7710E-04 6.6427E-04 6.8147E-04 6.0097E-04 

15 6.9180E-04 6.7796E-04 7.0863E-04 6.2376E-04 

20 7.9753E-04 7.6621E-04 7.5447E-04 6.5918E-04 

QLIKE 

1 9.2612E-02 8.9491E-02 8.8570E-02 8.5380E-02 

5 1.3645E-01 1.3423E-01 1.3677E-01 1.2800E-01 

10 1.6053E-01 1.6001E-01 1.6339E-01 1.5463E-01 

15 1.7113E-01 1.7156E-01 1.7169E-01 1.6709E-01 

20 1.8734E-01 1.8660E-01 1.8240E-01 1.7601E-01 
 

Table 4.Out-of-sample forecasting results for Bitcoin (MV:RRV) 

 Horizon GARCH CGARCH CARR CCARR 

MSE 

1 3.1053E-04 2.9390E-04 2.6445E-04 2.4871E-04 

5 4.9328E-04 4.8039E-04 4.6660E-04 4.2227E-04 

10 5.6734E-04 5.5274E-04 5.3460E-04 4.6518E-04 

15 5.8402E-04 5.6770E-04 5.5531E-04 4.8460E-04 

20 6.8742E-04 6.5321E-04 5.9672E-04 5.1711E-04 

QLIKE 

1 7.4878E-02 7.1751E-02 6.7023E-02 6.4334E-02 

5 1.1865E-01 1.1646E-01 1.1377E-01 1.0594E-01 

10 1.4367E-01 1.4297E-01 1.3953E-01 1.3197E-01 

15 1.5424E-01 1.5428E-01 1.4642E-01 1.4305E-01 

20 1.7079E-01 1.6939E-01 1.5669E-01 1.5179E-01 
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Figure 2.Out-of-sample forecasts of Bitcoin volatility 

 

Further, to see if there is significant difference in volatility forecasting 

accuracy for Bitcoin between two competing models, we report the Diebold-
Mariano test results in Tables5-7. As can be seen from the tables, the Diebold-

Mariano statistics for the CGARCH and GARCH models are unanimously reported 

to be positive and significant, suggesting that the CGARCH model is significantly 

better than the GARCH model. Most importantly, the Diebold-Mariano statistics 
for the equality of forecast accuracy of the CCARR forecasts and the others 

(GARCH, CGARCH and CARR forecasts) are consistently reported to be positive 

and significant, suggesting that the CCARR model produces significant more 
accurate out-of-sample forecasts for Bitcoin volatility compared to the other 

models. 

 

Table 5.Diebold-Mariano test results (MV:RNG) 

  CARR  CGARCH GARCH 

Forecast horizon: 1 day 

CCARR 1.7039* 2.8354*** 3.6683*** 

CARR 
 

2.1147** 3.0293*** 

CGARCH 
  

3.4061*** 

Forecast horizon: 5 days 

CCARR 2.6963*** 4.8644*** 5.2377*** 

CARR 
 

2.6715*** 3.1708*** 

CGARCH 
  

3.0588*** 

Forecast horizon: 10 days 
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CCARR 3.0873*** 5.8963*** 5.7500*** 

CARR  2.7332*** 3.0082*** 

CGARCH   2.2947** 

Forecast horizon: 15 days 

CCARR 2.7390*** 4.9165*** 4.8974*** 

CARR  2.5529** 2.7983*** 

CGARCH   2.5394** 

Forecast horizon: 20 days 

CCARR 2.8186*** 7.2221*** 7.2655*** 

CARR  3.8232*** 4.3102*** 

CGARCH   4.1788*** 

Note: The Diebold-Mariano test uses a Newey-West type estimator to account for 

the heteroskedasticity and autocorrelation in the loss differential. A positive 

statistic suggests that the model in the row dominates the model in the column and 
vice versa. *, **, and *** stand for statistical significance at the 10%, 5%, and 1% 

levels, respectively. 

 

Table 6.Diebold-Mariano test results (MV:RV) 

  CARR  CGARCH GARCH 

Forecast horizon: 1 day 

CCARR 3.0603*** 2.7936*** 3.9466*** 

CARR 
 

1.6387 2.8336*** 

CGARCH 
  

3.8684*** 

Forecast horizon: 5 days 

CCARR 3.5636*** 2.2521** 2.7227*** 

CARR 
 

-0.4294 0.1070 

CGARCH 
  

2.7498*** 

Forecast horizon: 10 days 

CCARR 4.6983*** 2.9684*** 3.0444*** 

CARR  -0.5517 -0.1294 

CGARCH   2.0187** 

Forecast horizon: 15 days 

CCARR 4.9785*** 1.7347* 1.9160* 

CARR  -0.7537 -0.3795 

CGARCH   2.0441** 

Forecast horizon: 20 days 

CCARR 4.9893*** 3.9710*** 4.4364*** 

CARR  0.2956 0.9986 

CGARCH   4.1649*** 
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Note: The Diebold-Mariano test uses a Newey-West type estimator to account for 
the heteroskedasticity and autocorrelation in the loss differential. A positive 

statistic suggests that the model in the row dominates the model in the column and 

vice versa. *, **, and *** stand for statistical significance at the 10%, 5%, and 1% 
levels, respectively. 

 

Table 7.Diebold-Mariano test results (MV:RRV) 

  CARR  CGARCH GARCH 

Forecast horizon: 1 day 

CCARR 3.3844*** 3.6531*** 4.9522*** 

CARR 
 

2.3484** 3.7237*** 

CGARCH 
  

4.4179*** 

Forecast horizon: 5 days 

CCARR 3.6141*** 3.7304*** 4.1984*** 

CARR 
 

0.6909 1.2697 

CGARCH 
  

3.1855*** 

Forecast horizon: 10 days 

CCARR 4.6100*** 4.5941*** 4.5860*** 

CARR  0.6593 1.0991 

CGARCH   2.5900*** 

Forecast horizon: 15 days 

CCARR 4.6671*** 3.0810*** 3.2382*** 

CARR  0.3495 0.7423 

CGARCH   2.6263*** 

Forecast horizon: 20 days 

CCARR 4.6963*** 5.5936*** 5.9774*** 

CARR  1.5967 2.3393** 

CGARCH   4.6735*** 

Note: The Diebold-Mariano test uses a Newey-West type estimator to account for 

the heteroskedasticity and autocorrelation in the loss differential. A positive 
statistic suggests that the model in the row dominates the model in the column and 

vice versa. *, **, and *** stand for statistical significance at the 10%, 5%, and 1% 

levels, respectively. 
 

5. Conclusions 

 

Bitcoin has attracted increasing attention in the recent years, and the price 
of Bitcoin has increased tremendously with extreme volatility. Therefore, it is of 

great importance to model and forecast the Bitcoin volatility, as it is crucial for 

investor's decision making and risk management. However, most of the previous 
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studies focus on GARCH-type models, which are return-based models that use 
only information from the closing prices to model and estimate the Bitcoin 

volatility. An alternative approach for modelling and forecasting the Bitcoin 

volatility is to employ the range-based volatility models that exploit the intraday 
information from the high and low prices.  

In this paper, the range-based CARR and CCARR models are used to 

model and forecast the Bitcoin volatility. To the best of our knowledge, this is the 

first study to use the CARR and CCARR models to model and forecast the Bitcoin 
volatility. We investigate and compare the out-of-sample performance between the 

return-based GARCH and CGARCH and range-based CARR and CCARR models 

for forecasting 1-day, 5-days, 10-days, 15-days and 20-days ahead Bitcoin 
volatility. We adopt two robust loss functions, namely the mean squared error 

(MSE) and the quasi-likelihood (QLIKE), as well as the Diebold-Mariano test to 

evaluate the out-of-sample performance of the competing models. The out-of-
sample results show that the CCARR model generates more accurate out-of-sample 

forecasts of Bitcoin volatility compared to the GARCH, CGARCH and CARR 

models under various volatility proxies, which highlights the value of using price 

range and including a second component of the conditional range for forecasting 
the Bitcoin volatility. Our findings have important implications for Bitcoin 

allocations and risk management, and can help investors make more reasonable 

decisions. 
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